Expanded Owens Valley Solar Array

From EOVSA Wiki
Revision as of 12:25, 3 July 2024 by Sjyu (talk | contribs) (→‎SoD Observing Logs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Eovsa1.png

EOVSA (Expanded Owens Valley Solar Array) is a solar-dedicated radio interferometer operated by the New Jersey Institute of Technology and serving as a National Science Foundation Geospace Facility. NSF.jpg

Operation of EOVSA is supported by the National Science Foundation under Grant No. AGS-2130832. Any opinions, findings, and conclusions or  recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science  Foundation. 

This wiki serves as the site for EOVSA documentation.

OVRO-LWA1.png

OVRO-LWA (Owens Valley Radio Observatory Long Wavelength Array) is an all-sky imager that has a new solar-dedicated spectroscopic imaging mode. OVRO-LWA is a multi-institutional collaboration led by Caltech. NJIT Solar Radio Group is leading its solar-mode development and science. At the bottom of this page are new links for that facility.

EOVSA Flare List

Using EOVSA Data

EOVSA Documentation


System Software

EOVSA Observing Log

2016 November; December

2017 January; February; March; April; May; June; July; August; September; October; November; December

2018 January; February; March; April; May; June; July; August; September; October; November; December

2019 January; February; March; April; May; June; July; August; September; October; November; December

2020 January; February; March; April; May; June; July; August; September; October; November; December

2021 January; February; March; April; May; June; July; August; September; October; November; December

2022 SQL Outage

2023 January; February; March; April; May; June; July; August; September; October; November; December

2024 January; February; March; April;May; June; July

SoD Observing Logs

Tohbans

Trouble Shooting Guide

Tohban Records

Owen's Notes

Caius' Notes

Tohban EOVSA Imaging Tutorial A-Z

Tohban OVRO-LWA Imaging Tutorial

Tohban Guide to Self Calibration and Imaging for EOVSA

Guide to Upgrade SolarSoft(SSW)

EOVSA Publications

Here is a (partial) list of publications that utilize EOVSA data. See also the collection of EOVSA publications at this NASA/ADS Library.

2024
Collier, H., Hayes, L. A., Yu, S., Battaglia, A. F., Ashfield, W., Polito, V., Harra, L. K., & Krucker, S. (2024), arXiv e-prints, arXiv:2402.10546. “Localising pulsations in the hard X-ray and microwave emission of an X-class flare”
Saqri, J., Veronig, A. M., Battaglia, A. F., Dickson, E. C. M., Gary, D. E., & Krucker, S. (2024), Astronomy and Astrophysics, 683, A41. "Efficiency of solar microflares in accelerating electrons when rooted in a sunspot"
2023
Tan, B., Yan, Y., Huang, J., Zhang, Y., Tan, C., & Zhu, X. (2023), Advances in Space Research, 72, 5563. "The physics of solar spectral imaging observations in dm-cm wavelengths and the application on space weather"
Li, D., Li, Z., Shi, F., Su, Y., Chen, W., Yu, F., Li, C., Qiu, Y., Huang, Y., & Ning, Z. (2023), Astronomy and Astrophysics, 680, L15. "Observational signature of continuously operating drivers of decayless kink oscillation"
Wang, M., Chen, B., Yu, S., Gary, D. E., Lee, J., Wang, H., & Cohen, C. (2023), The Astrophysical Journal, 954, 32. "The Solar Origin of an In Situ Type III Radio Burst Event"
Gary, D. E. (2023), Annual Review of Astronomy and Astrophysics, 61, 427. "New Insights from Imaging Spectroscopy of Solar Radio Emission"
Nita, G. M., Fleishman, G. D., Kuznetsov, A. A., Anfinogentov, S. A., Stupishin, A. G., Kontar, E. P., Schonfeld, S. J., Klimchuk, J. A., & Gary, D. E. (2023), The Astrophysical Journal Supplement Series, 267, 6. "Data-constrained Solar Modeling with GX Simulator"
Song, D.-C., Tian, J., Li, Y., Ding, M. D., Su, Y., Yu, S., Hong, J., Qiu, Y., Rao, S., Liu, X., Li, Q., Chen, X., Li, C., & Fang, C. (2023), The Astrophysical Journal, 952, L6. "Spectral Observations and Modeling of a Solar White-light Flare Observed by CHASE"
Mondal, S., Chen, B., & Yu, S. (2023), The Astrophysical Journal, 949, 56. "Multifrequency Microwave Imaging of Weak Transients from the Quiet Solar Corona"
Kontar, E. P., Emslie, A. G., Motorina, G. G., & Dennis, B. R. (2023), The Astrophysical Journal, 947, L13. "The Efficiency of Electron Acceleration during the Impulsive Phase of a Solar Flare"
Saqri, J., Veronig, A. M., Dickson, E. C. M., Podladchikova, T., Warmuth, A., Xiao, H., Gary, D. E., Battaglia, A. F., & Krucker, S. (2023), Astronomy and Astrophysics, 672, A23. "Multi-point study of the energy release and impulsive CME dynamics in an eruptive C7 flare"
2022
Kou, Y., Cheng, X., Wang, Y., Yu, S., Chen, B., Kontar, E. P., & Ding, M. (2022), Nature Communications, 13, 7680. "Microwave imaging of quasi-periodic pulsations at flare current sheet"
Chertok, I. M. (2022), Monthly Notices of the Royal Astronomical Society, 517, 2709. "On some features of the solar proton event on 2021 October 28 - GLE73"
Lörinčík, J., Polito, V., De Pontieu, B., Yu, S., & Freij, N. (2022), Frontiers in Astronomy and Space Sciences, 9, 334. "Rapid variations of Si IV spectra in a flare observed by interface region imaging spectrograph at a sub-second cadence"
Klein, K.-L., Musset, S., Vilmer, N., Briand, C., Krucker, S., Francesco Battaglia, A., Dresing, N., Palmroos, C., & Gary, D. E. (2022), Astronomy and Astrophysics, 663, A173. "The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona"
Fleishman, G. D., Nita, G. M., Chen, B., Yu, S., & Gary, D. E. (2022), Nature, 606, 674. "Solar flare accelerates nearly all electrons in a large coronal volume"
Li, X., Guo, F., Chen, B., Shen, C., & Glesener, L. (2022), The Astrophysical Journal, 932, 92. "Modeling Electron Acceleration and Transport in the Early Impulsive Phase of the 2017 September 10th Solar Flare"
Zhang, J., Chen, B., Yu, S., Tian, H., Wei, Y., Chen, H., Tan, G., Luo, Y., & Chen, X. (2022), The Astrophysical Journal, 932, 53. "Implications for Additional Plasma Heating Driving the Extreme-ultraviolet Late Phase of a Solar Flare with Microwave Imaging Spectroscopy"
Liu, N., Jing, J., Xu, Y., & Wang, H. (2022), The Astrophysical Journal, 930, 154. "Multi-instrument Comparative Study of Temperature, Number Density, and Emission Measure during the Precursor Phase of a Solar Flare"
López, F. M., Giménez de Castro, C. G., Mandrini, C. H., Simões, P. J. A., Cristiani, G. D., Gary, D. E., Francile, C., & Démoulin, P. (2022), Astronomy and Astrophysics, 657, A51. "A solar flare driven by thermal conduction observed in mid-infrared"
Unverferth, J., & Longcope, D. (2021), The Astrophysical Journal, 923, 248. "Examining Flux Tube Interactions as a Cause of Sub-alfvénic Outflow"
2021
Wei, Y., Chen, B., Yu, S., Wang, H., Jing, J., & Gary, D. E. (2021), The Astrophysical Journal, 923, 213. "Coronal Magnetic Field Measurements along a Partially Erupting Filament in a Solar Flare"
Jing, J., Inoue, S., Lee, J., Li, Q., Nita, G. M., Xu, Y., Liu, C., Gary, D. E., & Wang, H. (2021), The Astrophysical Journal, 922, 108. "Understanding the Initiation of the M2.4 Flare on 2017 July 14"
Battaglia, A. F., Saqri, J., Massa, P., Perracchione, E., Dickson, E. C. M., Xiao, H., Veronig, A. M., Warmuth, A., Battaglia, M., Hurford, G. J., Meuris, A., Limousin, O., Etesi, L., Maloney, S. A., Schwartz, R. A., Kuhar, M., Schuller, F., Senthamizh Pavai, V., Musset, S., Ryan, D. F., Kleint, L., Piana, M., Massone, A. M., Benvenuto, F., Sylwester, J., Litwicka, M., Stȩślicki, M., Mrozek, T., Vilmer, N., Fárník, F., Kašparová, J., Mann, G., Gallagher, P. T., Dennis, B. R., Csillaghy, A., Benz, A. O., & Krucker, S. (2021), Astronomy and Astrophysics, 656, A4. "STIX X-ray microflare observations during the Solar Orbiter commissioning phase"
Shaik, S. B., & Gary, D. E. (2021), The Astrophysical Journal, 919, 44. "Implications of Flat Optically Thick Microwave Spectra in Solar Flares for Source Size and Morphology"
Kocharov, L., Omodei, N., Mishev, A., Pesce-Rollins, M., Longo, F., Yu, S., Gary, D. E., Vainio, R., & Usoskin, I. (2021), The Astrophysical Journal, 915, 12. "Multiple Sources of Solar High-energy Protons"
Chen, B., Battaglia, M., Krucker, S., Reeves, K. K., & Glesener, L. (2021), The Astrophysical Journal, 908, L55. "Energetic Electron Distribution of the Coronal Acceleration Region: First Results from Joint Microwave and Hard X-Ray Imaging Spectroscopy"
Chhabra, S., Gary, D. E., Hallinan, G., Anderson, M. M., Chen, B., Greenhill, L. J., & Price, D. C. (2021), The Astrophysical Journal, 906, 132. "Imaging Spectroscopy of CME-associated Solar Radio Bursts using OVRO-LWA"
2020 and earlier
Reeves, K. K., Polito, V., Chen, B., Galan, G., Yu, S., Liu, W., & Li, G. (2020), The Astrophysical Journal, 905, 165. "Hot Plasma Flows and Oscillations in the Loop-top Region During the 2017 September 10 X8.2 Solar Flare"
Nindos, A. (2020), Frontiers in Astronomy and Space Sciences, 7, 57. "Incoherent Solar Radio Emission"
Yu, S., Chen, B., Reeves, K. K., Gary, D. E., Musset, S., Fleishman, G. D., Nita, G. M., & Glesener, L. (2020), The Astrophysical Journal, 900, 17. "Magnetic Reconnection during the Post-impulsive Phase of a Long-duration Solar Flare: Bidirectional Outflows as a Cause of Microwave and X-Ray Bursts"
Chen, B., Yu, S., Reeves, K. K., & Gary, D. E. (2020), The Astrophysical Journal, 895, L50. "Microwave Spectral Imaging of an Erupting Magnetic Flux Rope: Implications for the Standard Solar Flare Model in Three Dimensions"
Kuroda, N., Fleishman, G. D., Gary, D. E., Nita, G. M., Chen, B., & Yu, S. (2020), Frontiers in Astronomy and Space Sciences, 7, 22. "Evolution of Flare-accelerated Electrons Quantified by Spatially Resolved Analysis"
Glesener, L., Krucker, S., Duncan, J., Hannah, I. G., Grefenstette, B. W., Chen, B., Smith, D. M., White, S. M., & Hudson, H. (2020), The Astrophysical Journal, 891, L34. "Accelerated Electrons Observed Down to <7 keV in a NuSTAR Solar Microflare"
Karlický, M., Chen, B., Gary, D. E., Kašparová, J., & Rybák, J. (2020), The Astrophysical Journal, 889, 72. "Drifting Pulsation Structure at the Very Beginning of the 2017 September 10 Limb Flare"
Fleishman, G. D., Gary, D. E., Chen, B., Kuroda, N., Yu, S., & Nita, G. M. (2020), Science, 367, 278. "Decay of the coronal magnetic field can release sufficient energy to power a solar flare"
Chen, B., Shen, C., Gary, D. E., Reeves, K. K., Fleishman, G. D., Yu, S., Guo, F., Krucker, S., Lin, J., Nita, G. M., & Kong, X. (2020), Nature Astronomy, 4, 1140. "Measurement of magnetic field and relativistic electrons along a solar flare current sheet"
Lee, J. (2018), Journal of Astronomy and Space Sciences, 35, 211. "Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field"
Gary, D. E., Bastian, T. S., Chen, B., Fleishman, G. D., & Glesener, L. (2018), Science with a Next Generation Very Large Array, 517, 99. "Radio Observations of Solar Flares"
Polito, V., Dudík, J., Kašparová, J., Dzifčáková, E., Reeves, K. K., Testa, P., & Chen, B. (2018), The Astrophysical Journal, 864, 63. "Broad Non-Gaussian Fe XXIV Line Profiles in the Impulsive Phase of the 2017 September 10 X8.3-class Flare Observed by Hinode/EIS"
Gary, D. E., Chen, B., Dennis, B. R., Fleishman, G. D., Hurford, G. J., Krucker, S., McTiernan, J. M., Nita, G. M., Shih, A. Y., White, S. M., & Yu, S. (2018), The Astrophysical Journal, 863, 83. "Microwave and Hard X-Ray Observations of the 2017 September 10 Solar Limb Flare"
Fleishman, G. D., Nita, G. M., Kuroda, N., Jia, S., Tong, K., Wen, R. R., & Zhizhuo, Z. (2018), The Astrophysical Journal, 859, 17. "Revealing the Evolution of Non-thermal Electrons in Solar Flares Using 3D Modeling"
Kuroda, N., Gary, D. E., Wang, H., Fleishman, G. D., Nita, G. M., & Jing, J. (2018), The Astrophysical Journal, 852, 32. "Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare"
Wang, H., Liu, C., Ahn, K., Xu, Y., Jing, J., Deng, N., Huang, N., Liu, R., Kusano, K., Fleishman, G. D., Gary, D. E., & Cao, W. (2017), Nature Astronomy, 1, 0085. "High-resolution observations of flare precursors in the low solar atmosphere"
Nita, G. M., Hickish, J., MacMahon, D., & Gary, D. E. (2016), Journal of Astronomical Instrumentation, 5, 1641009-7366. "EOVSA Implementation of a Spectral Kurtosis Correlator for Transient Detection and Classification"
Nita, G. M., & Gary, D. E. (2016), Journal of Geophysical Research (Space Physics), 121, 7353. "Measurement of duration and signal-to-noise ratio of astronomical transients using a Spectral Kurtosis spectrometer"
Wang, Z., Gary, D. E., Fleishman, G. D., & White, S. M. (2015), The Astrophysical Journal, 805, 93. "Coronal Magnetography of a Simulated Solar Active Region from Microwave Imaging Spectropolarimetry"
Gary, D. E., Fleishman, G. D., & Nita, G. M. (2013), Solar Physics, 288, 549. "Magnetography of Solar Flaring Loops with Microwave Imaging Spectropolarimetry"

VLA Flare List and Publications

See this link for a list of flare observations made by the Karl G. Jansky Very Large Array (VLA). Below is a partial list of publications that utilize VLA solar data (see also this NASA/ADS Library).


Radio Data from Around The Heliosphere

OVRO-LWA Solar-Dedicated Spectroscopic Imager

The OVRO-LWA (Owens Valley Radio Observatory Long Wavelength Array) has recently been upgraded to include a solar-dedicated beam and two solar imaging modes (slow visibilities of 352 antennas with a 10-s cadence, and fast visibilities of 48 antennas with a 0.1-s cadence). The large collecting area and excellent calibration provide unprecedented high-sensitivity imaging of the quiet Sun and bursts. The array is currently in commissioning and observations are not yet continuous, but they are becoming more so. See the daily realtime data at http://ovsa.njit.edu/status.php for real-time display of the spectrogram and a selection of images, both updated on a 1-min cadence.

Solar-Dedicated Modes

Beamformer

The beamformer uses the 256 core antennas to form a synthesized beam of more than 1 degree in size that tracks the Sun from sunrise to sunset. This permits a continuous record of the full-Stokes total flux (without spatial resolution) of the Sun (a dynamic spectrum) with 24 kHz frequency resolution (3072 frequencies from 15-90 MHz) and as low as 1 ms time resolution.

Slow Visibility Imaging

In this mode, the entire 352-element array is interferometrically correlated to provide visibilities for imaging at all 3072 frequencies at 10-s time resolution. This is ideal for imaging quiet Sun and slowly-varying emission such as coronal mass ejections and active region variability.

Fast Visibility Imaging

In this mode, a subset of 48 antennas (chosen to include mainly outer antennas to maintain good spatial resolution) is interferometrically correlated to provide visibilities for imaging at 768 frequencies (96 kHz frequency resolution) at 0.1-s time resolution. This is ideal for imaging rapidly varying emission such as type II and type III bursts as well as many other solar spectral fine structures.

Inital Data Access

In its current commissioning state, we try to run the beamformer and imaging pipeline every day in real-time since November 2023 (no latency for beamforming spectrograms and 5-10 min latency for images). Quicklook real-time spectrograms/images can be accessed from http://ovsa.njit.edu/status.php. To access data from previous days, use the following links (replace yyyymmdd with the date you desire):

Note our pipeline processing development is still in the early phase. For example, absolute flux calibrations have not been done for the beamformer spectrograms. Also, artificial effects (including ionospheric refraction effects) are present in the images that cause distortions/shifts. We caution interested users only to consider them for quick-look purposes at this point. Please contact the EOVSA PIs (Dale Gary, Bin Chen) if you intend to use them for science.