Difference between revisions of "Polarization Mixing Correction (Old)"

From EOVSA Wiki
Jump to: navigation, search
(Status of tests)
Line 2: Line 2:
 
The newer 2.1-m antennas [Ants 1-8 and 12] have AzEl (azimuth-elevation) mounts, which means that the crossed linear feeds have a constant angle relative to the horizon (the axis of rotation being at the zenith).  The older 2.1-m antennas [Ants 9-11 and 13], and the 27-m antenna [Ant 14], have Equatorial mounts, which means that the crossed linear feeds have a constant angle with respect to the celestial equator, the axis of rotation being at the north celestial pole.  Thus, the celestial coordinate system is tilted by the local co-latitude (complement of the latitude).  This tilt results in a relative feed rotation between the 27-m antenna and the AzEl mounts, but not between the 27-m and the older equatorial mounts.  This angle is called the "parallactic angle," and is given by:
 
The newer 2.1-m antennas [Ants 1-8 and 12] have AzEl (azimuth-elevation) mounts, which means that the crossed linear feeds have a constant angle relative to the horizon (the axis of rotation being at the zenith).  The older 2.1-m antennas [Ants 9-11 and 13], and the 27-m antenna [Ant 14], have Equatorial mounts, which means that the crossed linear feeds have a constant angle with respect to the celestial equator, the axis of rotation being at the north celestial pole.  Thus, the celestial coordinate system is tilted by the local co-latitude (complement of the latitude).  This tilt results in a relative feed rotation between the 27-m antenna and the AzEl mounts, but not between the 27-m and the older equatorial mounts.  This angle is called the "parallactic angle," and is given by:
  
<center><math>\chi = \arctan(\cos\lambda \sin As(f)/[S_{on}(p,f,i) - S_{off}(p,f,i)]</math>.</center>
+
<center><math>\chi = \arctan(\cos\lambda \sin A, \sin\lambda \cos E - \cos\lambda \sin E \cos A)</math>,</center>
 +
 
 +
where <math>\lambda</math> is the site latitude, <math>A</math> is the Azimuth angle [0 north], and <math>E</math> is the Elevation angle [0 on horizon].
  
 
= Status of tests =
 
= Status of tests =

Revision as of 15:18, 20 October 2016

Explanation of Polarization Mixing

The newer 2.1-m antennas [Ants 1-8 and 12] have AzEl (azimuth-elevation) mounts, which means that the crossed linear feeds have a constant angle relative to the horizon (the axis of rotation being at the zenith). The older 2.1-m antennas [Ants 9-11 and 13], and the 27-m antenna [Ant 14], have Equatorial mounts, which means that the crossed linear feeds have a constant angle with respect to the celestial equator, the axis of rotation being at the north celestial pole. Thus, the celestial coordinate system is tilted by the local co-latitude (complement of the latitude). This tilt results in a relative feed rotation between the 27-m antenna and the AzEl mounts, but not between the 27-m and the older equatorial mounts. This angle is called the "parallactic angle," and is given by:

,

where is the site latitude, is the Azimuth angle [0 north], and is the Elevation angle [0 on horizon].

Status of tests