Expanded Owens Valley Solar Array: Difference between revisions

From EOVSA Wiki
Jump to navigation Jump to search
Tag: Manual revert
 
(73 intermediate revisions by 7 users not shown)
Line 4: Line 4:
<pre>Operation of EOVSA is supported by the National Science Foundation under Grant No. AGS-2130832. Any opinions, findings, and conclusions or  recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science  Foundation. </pre>
<pre>Operation of EOVSA is supported by the National Science Foundation under Grant No. AGS-2130832. Any opinions, findings, and conclusions or  recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science  Foundation. </pre>
This wiki serves as the site for EOVSA documentation.  </big>
This wiki serves as the site for EOVSA documentation.  </big>
[[File:OVRO-LWA1.png|border|text-top|800px]]
<big>OVRO-LWA (Owens Valley Radio Observatory Long Wavelength Array) is an all-sky imager that has a new solar-dedicated spectroscopic imaging mode. OVRO-LWA is a multi-institutional collaboration led by Caltech. NJIT Solar Radio Group is leading its solar-mode development and science. At the bottom of this page are new links for that facility.  </big>
== EOVSA Flare List ==
* [https://ovsa.njit.edu/flarelist Query EOVSA Flare list]
* List of EOVSA flares in separate years: [[2024]], [[2023]], [[2022]], [[2021]], [[2020]], [[2019]], [[2017]]
== Using EOVSA Data  ==
* <big>[[EOVSA Data Products]]</big>: An introduction to standard EOVSA spectrogram and spectral image products with example scripts for reading and plotting.
* <big>[[EOVSA Data Policy]]</big>: Policy for using EOVSA data products.
* <big>Analysis Software</big>: These are for in-depth use of EOVSA data (from calibrated visibilities) and tools for quantitative analysis. 
** [https://github.com/suncasa/suncasa SunCASA] A wrapper around [https://casa.nrao.edu/ CASA (the Common Astronomy Software Applications package)] for synthesis imaging and visualizing solar spectral imaging data. CASA is one of the leading software tool for "supporting the data post-processing needs of the next generation of radio astronomical telescopes such as ALMA and VLA", an international effort led by the [https://public.nrao.edu/ National Radio Astronomy Observatory]. The current version of CASA uses Python (2.7) interface. More information about CASA can be found on [https://casa.nrao.edu/ NRAO's CASA website ]. Note, CASA is available ONLY on UNIX-BASED PLATFORMS (and therefore, so is SunCASA).
** [https://github.com/Gelu-Nita/GSFIT GSFIT] A IDL-widget(GUI)-based spectral fitting package called gsfit, which provides a user-friendly display of EOVSA image cubes and an interface to fast fitting codes (via platform-dependent shared-object libraries).
** [https://github.com/suncasa/pygsfit pyGSFIT] A Python-widget(pyQT)-based spectral fitting package, which provides a user-friendly display of EOVSA image cubes, spatially resolved spectra, and an interface to scipy-based fitting codes.
** [[Spectrogram Software]]
** [[Mapping Software]]
* <big>Data Analysis Guides (for those who start from raw data) </big>
<!--** <big>[[EOVSA Data Analysis Tutorial 2022]]</big> and <big>[https://colab.research.google.com/drive/19NQb6Emb9HvKX4QHq9ZYCP3RM6nT7sDL#scrollTo=cLdDVptBGG-X EOVSA Workspace]</big> at [https://sphere.boulder.swri.edu/ SPHERE 2022 Workshop]-->
<!--** <big>[https://colab.research.google.com/drive/1lSLLxgOG6b8kgu9Sk6kSKvrViyubnXG6?usp=sharing#scrollTo=xbXyyLmCFCGL EOVSA Data Analysis Tutorial at RHESSI 19 Workshop]</big>-->
<!--** <big>[[EOVSA Data Analysis Tutorial]]</big> at [http://rhessi18.umn.edu/ RHESSI XVIII Workshop]-->
<!-- ** [[Self-Calibrating Flare Data]] Example script and guides for self-calibrating EOVSA flare data (to be completed)-->
<!-- ** [[Imaging]] -->
<!-- ** [[Flare Imaging]] -->
**[[Tohban Guide to Self Calibration and Imaging for EOVSA]] Step-to-step guide for manually making images from raw visibility data.
**[[EOVSA flare pipeline]] Description of the EOVSA flare pipeline and tutorial for running it to produce quicklook images.
<!-- ** [[Imaging]] -->
<!-- ** [[Flare Imaging]] -->
* <big>EOVSA Modeling Guide</big>
**[[GX Simulator]]
* Other helpful links
** [https://casaguides.nrao.edu CASA Guides]
** [http://www.lmsal.com/solarsoft/ SolarSoft IDL]
** [http://www.atnf.csiro.au/computing/software/miriad/userguide/userhtml.html Miriad Guides]
** [https://sites.google.com/site/fgscodes/ Fast Gyrosynchrotron Codes (Alexey Kuznetsov's website)]
** [[Basic GitHub Tutorial]]
<!--* <big>[[EOVSA Imaging Workshop]]</big>-->
* <big>[[Full Disk Simulations]]</big>
* <big>[[All-Day Synthesis Issues]]</big>
* <big>[[Analyzing Pre-2017 Data]]</big>
* <big>[[Fixing Pipeline Problems pre-2021-Feb-07]]</big>


== EOVSA Documentation ==
== EOVSA Documentation ==
Line 50: Line 96:
* <big>[[Starburst]]</big>
* <big>[[Starburst]]</big>


== Using EOVSA Data  ==
* <big>[[EOVSA Data products]]</big>
* <big>Analysis Software</big>
** [https://github.com/suncasa/suncasa SunCASA] A wrapper around [https://casa.nrao.edu/ CASA (the Common Astronomy Software Applications package)] for synthesis imaging and visualizing solar spectral imaging data. CASA is one of the leading software tool for "supporting the data post-processing needs of the next generation of radio astronomical telescopes such as ALMA and VLA", an international effort led by the [https://public.nrao.edu/ National Radio Astronomy Observatory]. The current version of CASA uses Python (2.7) interface. More information about CASA can be found on [https://casa.nrao.edu/ NRAO's CASA website ]. Note, CASA is available ONLY on UNIX-BASED PLATFORMS (and therefore, so is SunCASA).
** [https://github.com/Gelu-Nita/GSFIT GSFIT] A IDL-widget(GUI)-based spectral fitting package called gsfit, which provides a user-friendly display of EOVSA image cubes and an interface to fast fitting codes (via platform-dependent shared-object libraries).
** [[Spectrogram Software]]
** [[Mapping Software]]
* <big>Data Analysis Guides</big>
** <big>[[EOVSA Data Analysis Tutorial 2022]]</big> and <big>[https://colab.research.google.com/drive/19NQb6Emb9HvKX4QHq9ZYCP3RM6nT7sDL#scrollTo=cLdDVptBGG-X EOVSA Workspace]</big> at [https://sphere.boulder.swri.edu/ SPHERE 2022 Workshop]
** <big>[https://colab.research.google.com/drive/1lSLLxgOG6b8kgu9Sk6kSKvrViyubnXG6?usp=sharing#scrollTo=xbXyyLmCFCGL EOVSA Data Analysis Tutorial at RHESSI 19 Workshop]</big>
** <big>[[EOVSA Data Analysis Tutorial]]</big> at [http://rhessi18.umn.edu/ RHESSI XVIII Workshop]
** [[Self-Calibrating Flare Data]] Example script and guides for self-calibrating EOVSA flare data (to be completed)
<!-- ** [[Imaging]] -->
<!-- ** [[Flare Imaging]] -->
**[[IDB flare pipeline]] Tutorial to run the flare pipeline for quicklook images
<!-- ** [[Imaging]] -->
<!-- ** [[Flare Imaging]] -->
* <big>EOVSA Modeling Guide</big>
**[[GX Simulator]]
* Other helpful links
** [https://casaguides.nrao.edu CASA Guides]
** [http://www.lmsal.com/solarsoft/ SolarSoft IDL]
** [http://www.atnf.csiro.au/computing/software/miriad/userguide/userhtml.html Miriad Guides]
** [https://sites.google.com/site/fgscodes/ Fast Gyrosynchrotron Codes (Alexey Kuznetsov's website)]
** [[Basic GitHub Tutorial]]
<!--* <big>[[EOVSA Imaging Workshop]]</big>-->
* <big>[[Full Disk Simulations]]</big>
* <big>[[All-Day Synthesis Issues]]</big>
* <big>[[Analyzing Pre-2017 Data]]</big>
* <big>[[Fixing Pipeline Problems pre-2021-Feb-07]]</big>


== System Software ==
== EOVSA System Software ==


* LabVIEW software
* LabVIEW software
Line 90: Line 103:
* [[Python3 Code Installation]]
* [[Python3 Code Installation]]


== Observing Log ==
== EOVSA Observing Log ==
[[2016 November]]; [[2016 December| December]]
[[2016 November]]; [[2016 December| December]]


Line 112: Line 125:
[[2023 January]]; [[2023 February | February]]; [[2023 March | March]]; [[2023 April | April]]; [[2023 May | May]]; [[2023 June | June]];
[[2023 January]]; [[2023 February | February]]; [[2023 March | March]]; [[2023 April | April]]; [[2023 May | May]]; [[2023 June | June]];
[[2023 July | July]]; [[2023 August | August]]; [[2023 September | September]]; [[2023 October | October]]; [[2023 November | November]]; [[2023 December | December]]
[[2023 July | July]]; [[2023 August | August]]; [[2023 September | September]]; [[2023 October | October]]; [[2023 November | November]]; [[2023 December | December]]
[[2024 January]]; [[2024 February | February]]; [[2024 March | March]];[[2024 April | April]];[[2024 May |May]]; [[2024 June | June]]; [[2024 July | July]];  [[2024 August | August]];
[[2024 September | September]]; [[2024 October | October]]
== EOVSA Scientist on Duty ==
* Scientist on Duty (SoD): EOVSA team members take turns and serve as an SoD to work with our onsite observatory staff on day-to-day observing. They are also responsible for monitoring solar activities and ensuring that the data we collect are of high quality.
* SoD observing logs:
** 2024: [https://docs.google.com/document/d/1QDWw5y4HpcE7CSpzXwftMqQT4FDgNJj-6fRrgWrqdug/edit?usp=sharing May (and before that)], [https://docs.google.com/document/d/1Rh2gYBV2E454xVYEv8jx5IXKd1N2Z05ns4dhI2XCE08/edit?usp=sharing June], [https://docs.google.com/document/d/1beUpp6rgwjqSxKbuHzXIR9hhPrGyi0j-SjtEIeav9Vg/edit?usp=sharing July], [https://docs.google.com/document/d/1pSzUXW5gd-4cZAR-gglTUVM_J2UHMa4wYJ2AzD4cdEo/edit?usp=sharing August], [https://docs.google.com/document/d/18pArAP0kRDhXHbty_y3TtrygmWkC2oLn-UD7njIpRIo/edit?usp=sharing September], [https://docs.google.com/document/d/1Qt6vhrqPAOG7W5Y_tLiod_QgNR1FDyzRxQcg6_oJQd4/edit?usp=sharing October], [https://docs.google.com/document/d/1pv9-Wne80FCrg0J5BkjOafmof_s3jlnc9HwyzWkIBfU/edit?usp=sharing November], [https://docs.google.com/document/d/1O5svOVwQZbUON1GMR_8nBR5LAL0M8RM2_zWW4oeBiLk/edit?usp=sharing December]
* SoD instructions:
** Daily routines: see [https://docs.google.com/document/d/1_iGnMRRrvb85Z0vT8-LzgQmCOKDSATEuQ0vTsn2C-dc/edit?usp=sharing SoD Routines] for detailed instructions.
** Instructions for [[making quick-look flare spectrograms and movies]]
==OVRO-LWA Solar-Dedicated Spectroscopic Imager==
The OVRO-LWA (Owens Valley Radio Observatory Long Wavelength Array) has recently been upgraded to include a solar-dedicated beam and two solar imaging modes (slow visibilities of 352 antennas with a 10-s cadence, and fast visibilities of 48 antennas with a 0.1-s cadence).  The large collecting area and excellent calibration provide unprecedented high-sensitivity imaging of the quiet Sun and bursts.  The array is currently in commissioning and observations are not yet continuous, but they are becoming more so.  See the daily realtime data at http://ovsa.njit.edu/status.php for '''real-time display of the spectrogram and a selection of images''', both updated on a 1-min cadence.
===Solar-Dedicated Modes===
* Beamformer: the beamformer uses the 256 core antennas to form a synthesized beam of more than 1 degree in size that tracks the Sun from sunrise to sunset.  This permits a continuous record of the full-Stokes total flux (without spatial resolution) of the Sun (a dynamic spectrum) with 24 kHz frequency resolution (3072 frequencies from 15-90 MHz) and as low as 1 ms time resolution.
* Slow Visibility Imaging: in this mode, the entire 352-element array is interferometrically correlated to provide visibilities for imaging at all 3072 frequencies at 10-s time resolution.  This is ideal for imaging quiet Sun and slowly-varying emission such as coronal mass ejections and active region variability.
* Fast Visibility Imaging: in this mode, a subset of 48 antennas (chosen to include mainly outer antennas to maintain good spatial resolution) is interferometrically correlated to provide visibilities for imaging at 768 frequencies (96 kHz frequency resolution) at 0.1-s time resolution.  This is ideal for imaging rapidly varying emission such as type II and type III bursts as well as many other solar spectral fine structures.
===Inital Data Access===
In its current commissioning state, we try to run the beamformer and imaging pipeline every day in real-time since November 2023 (no latency for beamforming spectrograms and 5-10 min latency for images). Quicklook real-time spectrograms/images can be accessed from http://ovsa.njit.edu/status.php. To access data from previous days, use the following links (replace yyyymmdd with the date you desire):
* Quicklook beamformer total-power spectrograms: http://ovsa.njit.edu/lwa-data/1min_spectra/yyyymmdd/. Check this link for additional daily plots [[Daily OVRO-LWA Beamformer Data]].
* Quicklook multi-frequency movies at 1-min cadence: http://ovsa.njit.edu/lwa-data/1min_images/yyyymmdd/movie_yyyy-mm-dd.html
Note our pipeline processing development is still in the early phase. For example, absolute flux calibrations have not been done for the beamformer spectrograms. Also, artificial effects (including ionospheric refraction effects) are present in the images that cause distortions/shifts. We caution interested users only to consider them for quick-look purposes at this point. Please contact the EOVSA PIs (Dale Gary, Bin Chen) if you intend to use them for science.
===OVRO-LWA Operation Notes===
[[OVRO-LWA Operation Notes]]


== Tohbans ==
== Tohbans ==
Line 124: Line 169:


[[Tohban EOVSA Imaging Tutorial A-Z]]
[[Tohban EOVSA Imaging Tutorial A-Z]]
[[Tohban OVRO-LWA Imaging Tutorial]]


[[Tohban Guide to Self Calibration and Imaging for EOVSA]]
[[Tohban Guide to Self Calibration and Imaging for EOVSA]]
Line 129: Line 176:
[[Guide to Upgrade SolarSoft(SSW)]]
[[Guide to Upgrade SolarSoft(SSW)]]


== EOVSA Flare List ==
== EOVSA Publications ==
Here is a (partial) list of publications that utilize EOVSA data. See also the collection of EOVSA publications at [https://ui.adsabs.harvard.edu/public-libraries/eQ7HfPkySqydu-B8BCt6QQ this NASA/ADS Library].
; 2024
: Collier, H., Hayes, L. A., Yu, S., Battaglia, A. F., Ashfield, W., Polito, V., Harra, L. K., & Krucker, S. (2024), arXiv e-prints, arXiv:2402.10546. [https://ui.adsabs.harvard.edu/abs/2024arXiv240210546C “Localising pulsations in the hard X-ray and microwave emission of an X-class flare”]
: Saqri, J., Veronig, A. M., Battaglia, A. F., Dickson, E. C. M., Gary, D. E., & Krucker, S. (2024), Astronomy and Astrophysics, 683, A41. [https://ui.adsabs.harvard.edu/abs/2024A&A...683A..41S "Efficiency of solar microflares in accelerating electrons when rooted in a sunspot"]
; 2023
: Tan, B., Yan, Y., Huang, J., Zhang, Y., Tan, C., & Zhu, X. (2023), Advances in Space Research, 72, 5563. [https://ui.adsabs.harvard.edu/abs/2023AdSpR..72.5563T "The physics of solar spectral imaging observations in dm-cm wavelengths and the application on space weather"]
 
: Li, D., Li, Z., Shi, F., Su, Y., Chen, W., Yu, F., Li, C., Qiu, Y., Huang, Y., & Ning, Z. (2023), Astronomy and Astrophysics, 680, L15. [https://ui.adsabs.harvard.edu/abs/2023A&A...680L..15L "Observational signature of continuously operating drivers of decayless kink oscillation"]
 
: Wang, M., Chen, B., Yu, S., Gary, D. E., Lee, J., Wang, H., & Cohen, C. (2023), The Astrophysical Journal, 954, 32. [https://ui.adsabs.harvard.edu/abs/2023ApJ...954...32W "The Solar Origin of an In Situ Type III Radio Burst Event"]
 
: Gary, D. E. (2023), Annual Review of Astronomy and Astrophysics, 61, 427. [https://ui.adsabs.harvard.edu/abs/2023ARA&A..61..427G "New Insights from Imaging Spectroscopy of Solar Radio Emission"]
 
: Nita, G. M., Fleishman, G. D., Kuznetsov, A. A., Anfinogentov, S. A., Stupishin, A. G., Kontar, E. P., Schonfeld, S. J., Klimchuk, J. A., & Gary, D. E. (2023), The Astrophysical Journal Supplement Series, 267, 6. [https://ui.adsabs.harvard.edu/abs/2023ApJS..267....6N "Data-constrained Solar Modeling with GX Simulator"]


See [https://docs.google.com/spreadsheets/d/1P8jHuDRF93dMflU6RMQcsJqVepD9vFkPkofV8Imj4xA/edit?usp=sharing this link] for a list of EOVSA flares as a Google Spreadsheet.
: Song, D.-C., Tian, J., Li, Y., Ding, M. D., Su, Y., Yu, S., Hong, J., Qiu, Y., Rao, S., Liu, X., Li, Q., Chen, X., Li, C., & Fang, C. (2023), The Astrophysical Journal, 952, L6. [https://ui.adsabs.harvard.edu/abs/2023ApJ...952L...6S "Spectral Observations and Modeling of a Solar White-light Flare Observed by CHASE"]


[[Recent Flare List (2021-)]]
: Mondal, S., Chen, B., & Yu, S. (2023), The Astrophysical Journal, 949, 56. [https://ui.adsabs.harvard.edu/abs/2023ApJ...949...56M "Multifrequency Microwave Imaging of Weak Transients from the Quiet Solar Corona"]


[http://ovsa.njit.edu/jay/rd_db.php An older link] is available at the EOVSA website.
: Kontar, E. P., Emslie, A. G., Motorina, G. G., & Dennis, B. R. (2023), The Astrophysical Journal, 947, L13. [https://ui.adsabs.harvard.edu/abs/2023ApJ...947L..13K "The Efficiency of Electron Acceleration during the Impulsive Phase of a Solar Flare"]


== EOVSA Publications ==
: Saqri, J., Veronig, A. M., Dickson, E. C. M., Podladchikova, T., Warmuth, A., Xiao, H., Gary, D. E., Battaglia, A. F., & Krucker, S. (2023), Astronomy and Astrophysics, 672, A23. [https://ui.adsabs.harvard.edu/abs/2023A&A...672A..23S "Multi-point study of the energy release and impulsive CME dynamics in an eruptive C7 flare"]
Here is a (partial) list of publications that utilize EOVSA data. See also the collection of EOVSA publications at [https://ui.adsabs.harvard.edu/public-libraries/eQ7HfPkySqydu-B8BCt6QQ this NASA/ADS Library].
; 2023  
: [https://ui.adsabs.harvard.edu/abs/2023arXiv230107840M/abstract Mondal, S., Chen, B. & Yu, S. (2023) ApJ, submitted] ''Multifrequency microwave imaging of weak transients from the quiet solar corona''
; 2022
; 2022
: [https://ui.adsabs.harvard.edu/abs/2022FrASS...940945L/abstract Lörinčík et al (2022) Frontiers, 9, 1] ''Rapid variations of Si IV spectra in a flare observed by interface region imaging spectrograph at a sub-second cadence''
 
: [https://ui.adsabs.harvard.edu/abs/2022NatCo..13.7680K/abstract Kou et al. (2022) Nature Communications 13, 7680] ''Microwave imaging of quasi-periodic pulsations at flare current sheet''
: Kou, Y., Cheng, X., Wang, Y., Yu, S., Chen, B., Kontar, E. P., & Ding, M. (2022), Nature Communications, 13, 7680. [https://ui.adsabs.harvard.edu/abs/2022NatCo..13.7680K "Microwave imaging of quasi-periodic pulsations at flare current sheet"]
: [https://ui.adsabs.harvard.edu/abs/2022Natur.606..674F/abstract Fleishman et al. (2022) Nature 606, 674] ''Solar flare accelerates nearly all electrons in a large coronal volume''
 
: [https://ui.adsabs.harvard.edu/abs/2022ApJ...932...92L/abstract Li, X., et al., (2022) ApJ, 932, 92] ''Modeling Electron Acceleration and Transport in the Early Impulsive Phase of the 2017 September 10th Solar Flare''
: Chertok, I. M. (2022), Monthly Notices of the Royal Astronomical Society, 517, 2709. [https://ui.adsabs.harvard.edu/abs/2022MNRAS.517.2709C "On some features of the solar proton event on 2021 October 28 - GLE73"]
: [https://ui.adsabs.harvard.edu/abs/2022ApJ...930..154L/abstract Liu, N., et al., (2022), ApJ, 930, 154] ''Multi-instrument Comparative Study of Temperature, Number Density, and Emission Measure during the Precursor Phase of a Solar Flare''
 
: [https://ui.adsabs.harvard.edu/abs/2022arXiv220503518Z/abstract Zhang et al. (2022), ApJ, 932, 53] ''Implications for additional plasma heating driving the extreme-ultraviolet late phase of a solar flare with microwave imaging spectroscopy''
: Lörinčík, J., Polito, V., De Pontieu, B., Yu, S., & Freij, N. (2022), Frontiers in Astronomy and Space Sciences, 9, 334. [https://ui.adsabs.harvard.edu/abs/2022FrASS...940945L "Rapid variations of Si IV spectra in a flare observed by interface region imaging spectrograph at a sub-second cadence"]
: [https://ui.adsabs.harvard.edu/abs/2022A%26A...657A..51L/abstract Lopez et al. (2021), A&A, 657, A51] ''A solar flare driven by thermal conduction observed in mid-infrared''
 
; 2021
: Klein, K.-L., Musset, S., Vilmer, N., Briand, C., Krucker, S., Francesco Battaglia, A., Dresing, N., Palmroos, C., & Gary, D. E. (2022), Astronomy and Astrophysics, 663, A173. [https://ui.adsabs.harvard.edu/abs/2022A&A...663A.173K "The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona"]
: [https://ui.adsabs.harvard.edu/abs/2021ApJ...923..213W/abstract Wei et al. (2021), ApJ, 923, 213] ''Coronal Magnetic Field Measurements along a Partially Erupting Filament in a Solar Flare''
 
: [https://ui.adsabs.harvard.edu/abs/2021ApJ...919...44S/abstract Shaik & Gary (2021), ApJ, 919, 44] ''Implications of Flat Optically Thick Microwave Spectra in Solar Flares for Source Size and Morphology''
: Fleishman, G. D., Nita, G. M., Chen, B., Yu, S., & Gary, D. E. (2022), Nature, 606, 674. [https://ui.adsabs.harvard.edu/abs/2022Natur.606..674F "Solar flare accelerates nearly all electrons in a large coronal volume"]
: [https://ui.adsabs.harvard.edu/abs/2021ApJ...915...12K/abstract Kocharov et al. (2021), ApJ, 915, 12] ''Multiple Sources of Solar High-energy Protons''
 
: [https://ui.adsabs.harvard.edu/abs/2021ApJ...908L..55C/abstract Chen et al. (2021), ApJL, 908, L55] ''Energetic Electron Distribution of the Coronal Acceleration Region: First results from Joint Microwave and Hard X-ray Imaging Spectroscopy''
: Li, X., Guo, F., Chen, B., Shen, C., & Glesener, L. (2022), The Astrophysical Journal, 932, 92. [https://ui.adsabs.harvard.edu/abs/2022ApJ...932...92L "Modeling Electron Acceleration and Transport in the Early Impulsive Phase of the 2017 September 10th Solar Flare"]
: [https://ui.adsabs.harvard.edu/abs/2021ApJ...906..132C/abstract Chhabra et al. (2021), ApJ, 906, 132] ''Imaging Spectroscopy of CME-Associated Solar Radio Bursts''
 
; 2020
: Zhang, J., Chen, B., Yu, S., Tian, H., Wei, Y., Chen, H., Tan, G., Luo, Y., & Chen, X. (2022), The Astrophysical Journal, 932, 53. [https://ui.adsabs.harvard.edu/abs/2022ApJ...932...53Z "Implications for Additional Plasma Heating Driving the Extreme-ultraviolet Late Phase of a Solar Flare with Microwave Imaging Spectroscopy"]
: [https://ui.adsabs.harvard.edu/abs/2020ApJ...905..165R/abstract Reeves et al. (2020), ApJ, 905, 165] ''Hot Plasma Flows and Oscillations in the Loop-top Region During the September 10 2017 X8.2 Solar Flare''
 
: [https://ui.adsabs.harvard.edu/abs/2020ApJ...900...17Y/abstract Yu et al. (2020), ApJ, 900, 17] ''Magnetic Reconnection During the Post Impulsive Phase of the X8.2 Solar Flare: Bi-Directional Outflows as a Cause of Microwave and X-ray Bursts''
: Liu, N., Jing, J., Xu, Y., & Wang, H. (2022), The Astrophysical Journal, 930, 154. [https://ui.adsabs.harvard.edu/abs/2022ApJ...930..154L "Multi-instrument Comparative Study of Temperature, Number Density, and Emission Measure during the Precursor Phase of a Solar Flare"]
: [https://ui.adsabs.harvard.edu/abs/2020NatAs...4.1140C/abstract Chen et al. (2020b), Nature Astronomy, 4, 1140] ''Measurement of magnetic field and relativistic electrons along a solar flare current sheet''
 
: [https://ui.adsabs.harvard.edu/abs/2020ApJ...895L..50C/abstract Chen et al. (2020a), ApJL, 895, 50] ''Microwave Spectral Imaging of an Erupting Magnetic Flux Rope: Implications for the Standard Solar Flare Model in Three Dimensions''
: López, F. M., Giménez de Castro, C. G., Mandrini, C. H., Simões, P. J. A., Cristiani, G. D., Gary, D. E., Francile, C., & Démoulin, P. (2022), Astronomy and Astrophysics, 657, A51. [https://ui.adsabs.harvard.edu/abs/2022A&A...657A..51L "A solar flare driven by thermal conduction observed in mid-infrared"]
: [https://ui.adsabs.harvard.edu/abs/2020FrASS...7...22K/abstract Kuroda et al. (2020), Frontiers, 7, 22] ''Evolution of Flare-accelerated Electrons Quantified by Spatially Resolved Analysis''
 
: [https://ui.adsabs.harvard.edu/abs/2020ApJ...891L..34G/abstract Glesener et al. (2020), ApJL, 891, 34] ''Accelerated Electrons Observed Down to <7 keV in a NuSTAR Solar Microflare''
: Unverferth, J., & Longcope, D. (2021), The Astrophysical Journal, 923, 248. [https://ui.adsabs.harvard.edu/abs/2021ApJ...923..248U "Examining Flux Tube Interactions as a Cause of Sub-alfvénic Outflow"]
: [https://ui.adsabs.harvard.edu/abs/2020ApJ...889...72K/abstract Karlicky at al. (2020), ApJ, 889, 72] ''Drifting Pulsation Structure at the Very Beginning of the 2017 September 10 Limb Flare''
;2021
: [https://ui.adsabs.harvard.edu/abs/2020Sci...367..278F/abstract Fleishman et al. (2020), Science, 367, 278] ''Decay of the coronal magnetic field can release sufficient energy to power a solar flare''
 
: [https://ui.adsabs.harvard.edu/abs/2020AAS...23538501G/abstract Gary et al. (2020), BAAS 52, 385.01] [https://aas235-aas.ipostersessions.com/default.aspx?s=97-69-9E-4B-34-19-68-53-1B-C6-21-0C-16-1C-5C-82&guestview=true Direct link to AAS iPoster] ''A new view of the solar atmosphere: daily full-disk multifrequency radio images from EOVSA''
: Wei, Y., Chen, B., Yu, S., Wang, H., Jing, J., & Gary, D. E. (2021), The Astrophysical Journal, 923, 213. [https://ui.adsabs.harvard.edu/abs/2021ApJ...923..213W "Coronal Magnetic Field Measurements along a Partially Erupting Filament in a Solar Flare"]
; 2018
 
: [https://ui.adsabs.harvard.edu/#abs/2018ApJ...864...63P/abstract Polito et al. (2018), ApJ, 864, 63] ''Broad Non-Gaussian Fe XXIV Line Profiles in the Impulsive Phase of the 2017 September 10 X8.3-class Flare Observed by Hinode/EIS''
: Jing, J., Inoue, S., Lee, J., Li, Q., Nita, G. M., Xu, Y., Liu, C., Gary, D. E., & Wang, H. (2021), The Astrophysical Journal, 922, 108. [https://ui.adsabs.harvard.edu/abs/2021ApJ...922..108J "Understanding the Initiation of the M2.4 Flare on 2017 July 14"]
: [https://ui.adsabs.harvard.edu/#abs/2018ApJ...863...83G/abstract Gary et al. (2018), ApJ, 863, 83] ''Microwave and Hard X-Ray Observations of the 2017 September 10 Solar Limb Flare''
 
: [https://ui.adsabs.harvard.edu/#abs/2018ApJ...852...32K/abstract Kuroda et al. (2018), ApJ, 852, 32] ''Three-dimensional Forward-fit Modeling of the Hard X-ray and the Microwave Emissions of the 2015 June 22 M6.5 flare''
: Battaglia, A. F., Saqri, J., Massa, P., Perracchione, E., Dickson, E. C. M., Xiao, H., Veronig, A. M., Warmuth, A., Battaglia, M., Hurford, G. J., Meuris, A., Limousin, O., Etesi, L., Maloney, S. A., Schwartz, R. A., Kuhar, M., Schuller, F., Senthamizh Pavai, V., Musset, S., Ryan, D. F., Kleint, L., Piana, M., Massone, A. M., Benvenuto, F., Sylwester, J., Litwicka, M., Stȩślicki, M., Mrozek, T., Vilmer, N., Fárník, F., Kašparová, J., Mann, G., Gallagher, P. T., Dennis, B. R., Csillaghy, A., Benz, A. O., & Krucker, S. (2021), Astronomy and Astrophysics, 656, A4. [https://ui.adsabs.harvard.edu/abs/2021A&A...656A...4B "STIX X-ray microflare observations during the Solar Orbiter commissioning phase"]
; 2017
 
: [https://ui.adsabs.harvard.edu/abs/2017NatAs...1E..85W/abstract Wang et al. (2017), Nature Astronomy, 1, 85] ''High-resolution observations of flare precursors in the low solar atmosphere''
: Shaik, S. B., & Gary, D. E. (2021), The Astrophysical Journal, 919, 44. [https://ui.adsabs.harvard.edu/abs/2021ApJ...919...44S "Implications of Flat Optically Thick Microwave Spectra in Solar Flares for Source Size and Morphology"]
; 2016
 
: [https://ui.adsabs.harvard.edu/abs/2016JAI.....541009N/abstract Nita et al. (2016), J. Astron. Instr., 5, 1641009-7366] ''EOVSA Implementation of a Spectral Kurtosis Correlator for Transient Detection and Classification''
: Kocharov, L., Omodei, N., Mishev, A., Pesce-Rollins, M., Longo, F., Yu, S., Gary, D. E., Vainio, R., & Usoskin, I. (2021), The Astrophysical Journal, 915, 12. [https://ui.adsabs.harvard.edu/abs/2021ApJ...915...12K "Multiple Sources of Solar High-energy Protons"]
 
: Chen, B., Battaglia, M., Krucker, S., Reeves, K. K., & Glesener, L. (2021), The Astrophysical Journal, 908, L55. [https://ui.adsabs.harvard.edu/abs/2021ApJ...908L..55C "Energetic Electron Distribution of the Coronal Acceleration Region: First Results from Joint Microwave and Hard X-Ray Imaging Spectroscopy"]
 
: Chhabra, S., Gary, D. E., Hallinan, G., Anderson, M. M., Chen, B., Greenhill, L. J., & Price, D. C. (2021), The Astrophysical Journal, 906, 132. [https://ui.adsabs.harvard.edu/abs/2021ApJ...906..132C "Imaging Spectroscopy of CME-associated Solar Radio Bursts using OVRO-LWA"]
;2020 and earlier
 
: Reeves, K. K., Polito, V., Chen, B., Galan, G., Yu, S., Liu, W., & Li, G. (2020), The Astrophysical Journal, 905, 165. [https://ui.adsabs.harvard.edu/abs/2020ApJ...905..165R "Hot Plasma Flows and Oscillations in the Loop-top Region During the 2017 September 10 X8.2 Solar Flare"]
 
: Nindos, A. (2020), Frontiers in Astronomy and Space Sciences, 7, 57. [https://ui.adsabs.harvard.edu/abs/2020FrASS...7...57N "Incoherent Solar Radio Emission"]
 
: Yu, S., Chen, B., Reeves, K. K., Gary, D. E., Musset, S., Fleishman, G. D., Nita, G. M., & Glesener, L. (2020), The Astrophysical Journal, 900, 17. [https://ui.adsabs.harvard.edu/abs/2020ApJ...900...17Y "Magnetic Reconnection during the Post-impulsive Phase of a Long-duration Solar Flare: Bidirectional Outflows as a Cause of Microwave and X-Ray Bursts"]
 
: Chen, B., Yu, S., Reeves, K. K., & Gary, D. E. (2020), The Astrophysical Journal, 895, L50. [https://ui.adsabs.harvard.edu/abs/2020ApJ...895L..50C "Microwave Spectral Imaging of an Erupting Magnetic Flux Rope: Implications for the Standard Solar Flare Model in Three Dimensions"]
 
: Kuroda, N., Fleishman, G. D., Gary, D. E., Nita, G. M., Chen, B., & Yu, S. (2020), Frontiers in Astronomy and Space Sciences, 7, 22. [https://ui.adsabs.harvard.edu/abs/2020FrASS...7...22K "Evolution of Flare-accelerated Electrons Quantified by Spatially Resolved Analysis"]
 
: Glesener, L., Krucker, S., Duncan, J., Hannah, I. G., Grefenstette, B. W., Chen, B., Smith, D. M., White, S. M., & Hudson, H. (2020), The Astrophysical Journal, 891, L34. [https://ui.adsabs.harvard.edu/abs/2020ApJ...891L..34G "Accelerated Electrons Observed Down to <7 keV in a NuSTAR Solar Microflare"]
 
: Karlický, M., Chen, B., Gary, D. E., Kašparová, J., & Rybák, J. (2020), The Astrophysical Journal, 889, 72. [https://ui.adsabs.harvard.edu/abs/2020ApJ...889...72K "Drifting Pulsation Structure at the Very Beginning of the 2017 September 10 Limb Flare"]
 
: Fleishman, G. D., Gary, D. E., Chen, B., Kuroda, N., Yu, S., & Nita, G. M. (2020), Science, 367, 278. [https://ui.adsabs.harvard.edu/abs/2020Sci...367..278F "Decay of the coronal magnetic field can release sufficient energy to power a solar flare"]
 
: Chen, B., Shen, C., Gary, D. E., Reeves, K. K., Fleishman, G. D., Yu, S., Guo, F., Krucker, S., Lin, J., Nita, G. M., & Kong, X. (2020), Nature Astronomy, 4, 1140. [https://ui.adsabs.harvard.edu/abs/2020NatAs...4.1140C "Measurement of magnetic field and relativistic electrons along a solar flare current sheet"]
 
: Lee, J. (2018), Journal of Astronomy and Space Sciences, 35, 211. [https://ui.adsabs.harvard.edu/abs/2018JASS...35..211L "Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field"]
 
: Gary, D. E., Bastian, T. S., Chen, B., Fleishman, G. D., & Glesener, L. (2018), Science with a Next Generation Very Large Array, 517, 99. [https://ui.adsabs.harvard.edu/abs/2018ASPC..517...99G "Radio Observations of Solar Flares"]
 
: Polito, V., Dudík, J., Kašparová, J., Dzifčáková, E., Reeves, K. K., Testa, P., & Chen, B. (2018), The Astrophysical Journal, 864, 63. [https://ui.adsabs.harvard.edu/abs/2018ApJ...864...63P "Broad Non-Gaussian Fe XXIV Line Profiles in the Impulsive Phase of the 2017 September 10 X8.3-class Flare Observed by Hinode/EIS"]
 
: Gary, D. E., Chen, B., Dennis, B. R., Fleishman, G. D., Hurford, G. J., Krucker, S., McTiernan, J. M., Nita, G. M., Shih, A. Y., White, S. M., & Yu, S. (2018), The Astrophysical Journal, 863, 83. [https://ui.adsabs.harvard.edu/abs/2018ApJ...863...83G "Microwave and Hard X-Ray Observations of the 2017 September 10 Solar Limb Flare"]
 
: Fleishman, G. D., Nita, G. M., Kuroda, N., Jia, S., Tong, K., Wen, R. R., & Zhizhuo, Z. (2018), The Astrophysical Journal, 859, 17. [https://ui.adsabs.harvard.edu/abs/2018ApJ...859...17F "Revealing the Evolution of Non-thermal Electrons in Solar Flares Using 3D Modeling"]
 
: Kuroda, N., Gary, D. E., Wang, H., Fleishman, G. D., Nita, G. M., & Jing, J. (2018), The Astrophysical Journal, 852, 32. [https://ui.adsabs.harvard.edu/abs/2018ApJ...852...32K "Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare"]
 
: Wang, H., Liu, C., Ahn, K., Xu, Y., Jing, J., Deng, N., Huang, N., Liu, R., Kusano, K., Fleishman, G. D., Gary, D. E., & Cao, W. (2017), Nature Astronomy, 1, 0085. [https://ui.adsabs.harvard.edu/abs/2017NatAs...1E..85W "High-resolution observations of flare precursors in the low solar atmosphere"]
 
: Nita, G. M., Hickish, J., MacMahon, D., & Gary, D. E. (2016), Journal of Astronomical Instrumentation, 5, 1641009-7366. [https://ui.adsabs.harvard.edu/abs/2016JAI.....541009N "EOVSA Implementation of a Spectral Kurtosis Correlator for Transient Detection and Classification"]
 
: Nita, G. M., & Gary, D. E. (2016), Journal of Geophysical Research (Space Physics), 121, 7353. [https://ui.adsabs.harvard.edu/abs/2016JGRA..121.7353N "Measurement of duration and signal-to-noise ratio of astronomical transients using a Spectral Kurtosis spectrometer"]
 
: Wang, Z., Gary, D. E., Fleishman, G. D., & White, S. M. (2015), The Astrophysical Journal, 805, 93. [https://ui.adsabs.harvard.edu/abs/2015ApJ...805...93W "Coronal Magnetography of a Simulated Solar Active Region from Microwave Imaging Spectropolarimetry"]
 
: Gary, D. E., Fleishman, G. D., & Nita, G. M. (2013), Solar Physics, 288, 549. [https://ui.adsabs.harvard.edu/abs/2013SoPh..288..549G "Magnetography of Solar Flaring Loops with Microwave Imaging Spectropolarimetry"]


== VLA Flare List and Publications ==
== VLA Flare List and Publications ==

Latest revision as of 11:58, 25 October 2024

Eovsa1.png

EOVSA (Expanded Owens Valley Solar Array) is a solar-dedicated radio interferometer operated by the New Jersey Institute of Technology and serving as a National Science Foundation Geospace Facility. NSF.jpg

Operation of EOVSA is supported by the National Science Foundation under Grant No. AGS-2130832. Any opinions, findings, and conclusions or  recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science  Foundation. 

This wiki serves as the site for EOVSA documentation.

OVRO-LWA1.png

OVRO-LWA (Owens Valley Radio Observatory Long Wavelength Array) is an all-sky imager that has a new solar-dedicated spectroscopic imaging mode. OVRO-LWA is a multi-institutional collaboration led by Caltech. NJIT Solar Radio Group is leading its solar-mode development and science. At the bottom of this page are new links for that facility.

EOVSA Flare List

Using EOVSA Data

  • EOVSA Data Products: An introduction to standard EOVSA spectrogram and spectral image products with example scripts for reading and plotting.
  • EOVSA Data Policy: Policy for using EOVSA data products.
  • Analysis Software: These are for in-depth use of EOVSA data (from calibrated visibilities) and tools for quantitative analysis.
    • SunCASA A wrapper around CASA (the Common Astronomy Software Applications package) for synthesis imaging and visualizing solar spectral imaging data. CASA is one of the leading software tool for "supporting the data post-processing needs of the next generation of radio astronomical telescopes such as ALMA and VLA", an international effort led by the National Radio Astronomy Observatory. The current version of CASA uses Python (2.7) interface. More information about CASA can be found on NRAO's CASA website . Note, CASA is available ONLY on UNIX-BASED PLATFORMS (and therefore, so is SunCASA).
    • GSFIT A IDL-widget(GUI)-based spectral fitting package called gsfit, which provides a user-friendly display of EOVSA image cubes and an interface to fast fitting codes (via platform-dependent shared-object libraries).
    • pyGSFIT A Python-widget(pyQT)-based spectral fitting package, which provides a user-friendly display of EOVSA image cubes, spatially resolved spectra, and an interface to scipy-based fitting codes.
    • Spectrogram Software
    • Mapping Software
  • Data Analysis Guides (for those who start from raw data)

EOVSA Documentation


EOVSA System Software

EOVSA Observing Log

2016 November; December

2017 January; February; March; April; May; June; July; August; September; October; November; December

2018 January; February; March; April; May; June; July; August; September; October; November; December

2019 January; February; March; April; May; June; July; August; September; October; November; December

2020 January; February; March; April; May; June; July; August; September; October; November; December

2021 January; February; March; April; May; June; July; August; September; October; November; December

2022 SQL Outage

2023 January; February; March; April; May; June; July; August; September; October; November; December

2024 January; February; March; April;May; June; July; August; September; October

EOVSA Scientist on Duty

OVRO-LWA Solar-Dedicated Spectroscopic Imager

The OVRO-LWA (Owens Valley Radio Observatory Long Wavelength Array) has recently been upgraded to include a solar-dedicated beam and two solar imaging modes (slow visibilities of 352 antennas with a 10-s cadence, and fast visibilities of 48 antennas with a 0.1-s cadence). The large collecting area and excellent calibration provide unprecedented high-sensitivity imaging of the quiet Sun and bursts. The array is currently in commissioning and observations are not yet continuous, but they are becoming more so. See the daily realtime data at http://ovsa.njit.edu/status.php for real-time display of the spectrogram and a selection of images, both updated on a 1-min cadence.

Solar-Dedicated Modes

  • Beamformer: the beamformer uses the 256 core antennas to form a synthesized beam of more than 1 degree in size that tracks the Sun from sunrise to sunset. This permits a continuous record of the full-Stokes total flux (without spatial resolution) of the Sun (a dynamic spectrum) with 24 kHz frequency resolution (3072 frequencies from 15-90 MHz) and as low as 1 ms time resolution.
  • Slow Visibility Imaging: in this mode, the entire 352-element array is interferometrically correlated to provide visibilities for imaging at all 3072 frequencies at 10-s time resolution. This is ideal for imaging quiet Sun and slowly-varying emission such as coronal mass ejections and active region variability.
  • Fast Visibility Imaging: in this mode, a subset of 48 antennas (chosen to include mainly outer antennas to maintain good spatial resolution) is interferometrically correlated to provide visibilities for imaging at 768 frequencies (96 kHz frequency resolution) at 0.1-s time resolution. This is ideal for imaging rapidly varying emission such as type II and type III bursts as well as many other solar spectral fine structures.

Inital Data Access

In its current commissioning state, we try to run the beamformer and imaging pipeline every day in real-time since November 2023 (no latency for beamforming spectrograms and 5-10 min latency for images). Quicklook real-time spectrograms/images can be accessed from http://ovsa.njit.edu/status.php. To access data from previous days, use the following links (replace yyyymmdd with the date you desire):

Note our pipeline processing development is still in the early phase. For example, absolute flux calibrations have not been done for the beamformer spectrograms. Also, artificial effects (including ionospheric refraction effects) are present in the images that cause distortions/shifts. We caution interested users only to consider them for quick-look purposes at this point. Please contact the EOVSA PIs (Dale Gary, Bin Chen) if you intend to use them for science.

OVRO-LWA Operation Notes

OVRO-LWA Operation Notes

Tohbans

Trouble Shooting Guide

Tohban Records

Owen's Notes

Caius' Notes

Tohban EOVSA Imaging Tutorial A-Z

Tohban OVRO-LWA Imaging Tutorial

Tohban Guide to Self Calibration and Imaging for EOVSA

Guide to Upgrade SolarSoft(SSW)

EOVSA Publications

Here is a (partial) list of publications that utilize EOVSA data. See also the collection of EOVSA publications at this NASA/ADS Library.

2024
Collier, H., Hayes, L. A., Yu, S., Battaglia, A. F., Ashfield, W., Polito, V., Harra, L. K., & Krucker, S. (2024), arXiv e-prints, arXiv:2402.10546. “Localising pulsations in the hard X-ray and microwave emission of an X-class flare”
Saqri, J., Veronig, A. M., Battaglia, A. F., Dickson, E. C. M., Gary, D. E., & Krucker, S. (2024), Astronomy and Astrophysics, 683, A41. "Efficiency of solar microflares in accelerating electrons when rooted in a sunspot"
2023
Tan, B., Yan, Y., Huang, J., Zhang, Y., Tan, C., & Zhu, X. (2023), Advances in Space Research, 72, 5563. "The physics of solar spectral imaging observations in dm-cm wavelengths and the application on space weather"
Li, D., Li, Z., Shi, F., Su, Y., Chen, W., Yu, F., Li, C., Qiu, Y., Huang, Y., & Ning, Z. (2023), Astronomy and Astrophysics, 680, L15. "Observational signature of continuously operating drivers of decayless kink oscillation"
Wang, M., Chen, B., Yu, S., Gary, D. E., Lee, J., Wang, H., & Cohen, C. (2023), The Astrophysical Journal, 954, 32. "The Solar Origin of an In Situ Type III Radio Burst Event"
Gary, D. E. (2023), Annual Review of Astronomy and Astrophysics, 61, 427. "New Insights from Imaging Spectroscopy of Solar Radio Emission"
Nita, G. M., Fleishman, G. D., Kuznetsov, A. A., Anfinogentov, S. A., Stupishin, A. G., Kontar, E. P., Schonfeld, S. J., Klimchuk, J. A., & Gary, D. E. (2023), The Astrophysical Journal Supplement Series, 267, 6. "Data-constrained Solar Modeling with GX Simulator"
Song, D.-C., Tian, J., Li, Y., Ding, M. D., Su, Y., Yu, S., Hong, J., Qiu, Y., Rao, S., Liu, X., Li, Q., Chen, X., Li, C., & Fang, C. (2023), The Astrophysical Journal, 952, L6. "Spectral Observations and Modeling of a Solar White-light Flare Observed by CHASE"
Mondal, S., Chen, B., & Yu, S. (2023), The Astrophysical Journal, 949, 56. "Multifrequency Microwave Imaging of Weak Transients from the Quiet Solar Corona"
Kontar, E. P., Emslie, A. G., Motorina, G. G., & Dennis, B. R. (2023), The Astrophysical Journal, 947, L13. "The Efficiency of Electron Acceleration during the Impulsive Phase of a Solar Flare"
Saqri, J., Veronig, A. M., Dickson, E. C. M., Podladchikova, T., Warmuth, A., Xiao, H., Gary, D. E., Battaglia, A. F., & Krucker, S. (2023), Astronomy and Astrophysics, 672, A23. "Multi-point study of the energy release and impulsive CME dynamics in an eruptive C7 flare"
2022
Kou, Y., Cheng, X., Wang, Y., Yu, S., Chen, B., Kontar, E. P., & Ding, M. (2022), Nature Communications, 13, 7680. "Microwave imaging of quasi-periodic pulsations at flare current sheet"
Chertok, I. M. (2022), Monthly Notices of the Royal Astronomical Society, 517, 2709. "On some features of the solar proton event on 2021 October 28 - GLE73"
Lörinčík, J., Polito, V., De Pontieu, B., Yu, S., & Freij, N. (2022), Frontiers in Astronomy and Space Sciences, 9, 334. "Rapid variations of Si IV spectra in a flare observed by interface region imaging spectrograph at a sub-second cadence"
Klein, K.-L., Musset, S., Vilmer, N., Briand, C., Krucker, S., Francesco Battaglia, A., Dresing, N., Palmroos, C., & Gary, D. E. (2022), Astronomy and Astrophysics, 663, A173. "The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona"
Fleishman, G. D., Nita, G. M., Chen, B., Yu, S., & Gary, D. E. (2022), Nature, 606, 674. "Solar flare accelerates nearly all electrons in a large coronal volume"
Li, X., Guo, F., Chen, B., Shen, C., & Glesener, L. (2022), The Astrophysical Journal, 932, 92. "Modeling Electron Acceleration and Transport in the Early Impulsive Phase of the 2017 September 10th Solar Flare"
Zhang, J., Chen, B., Yu, S., Tian, H., Wei, Y., Chen, H., Tan, G., Luo, Y., & Chen, X. (2022), The Astrophysical Journal, 932, 53. "Implications for Additional Plasma Heating Driving the Extreme-ultraviolet Late Phase of a Solar Flare with Microwave Imaging Spectroscopy"
Liu, N., Jing, J., Xu, Y., & Wang, H. (2022), The Astrophysical Journal, 930, 154. "Multi-instrument Comparative Study of Temperature, Number Density, and Emission Measure during the Precursor Phase of a Solar Flare"
López, F. M., Giménez de Castro, C. G., Mandrini, C. H., Simões, P. J. A., Cristiani, G. D., Gary, D. E., Francile, C., & Démoulin, P. (2022), Astronomy and Astrophysics, 657, A51. "A solar flare driven by thermal conduction observed in mid-infrared"
Unverferth, J., & Longcope, D. (2021), The Astrophysical Journal, 923, 248. "Examining Flux Tube Interactions as a Cause of Sub-alfvénic Outflow"
2021
Wei, Y., Chen, B., Yu, S., Wang, H., Jing, J., & Gary, D. E. (2021), The Astrophysical Journal, 923, 213. "Coronal Magnetic Field Measurements along a Partially Erupting Filament in a Solar Flare"
Jing, J., Inoue, S., Lee, J., Li, Q., Nita, G. M., Xu, Y., Liu, C., Gary, D. E., & Wang, H. (2021), The Astrophysical Journal, 922, 108. "Understanding the Initiation of the M2.4 Flare on 2017 July 14"
Battaglia, A. F., Saqri, J., Massa, P., Perracchione, E., Dickson, E. C. M., Xiao, H., Veronig, A. M., Warmuth, A., Battaglia, M., Hurford, G. J., Meuris, A., Limousin, O., Etesi, L., Maloney, S. A., Schwartz, R. A., Kuhar, M., Schuller, F., Senthamizh Pavai, V., Musset, S., Ryan, D. F., Kleint, L., Piana, M., Massone, A. M., Benvenuto, F., Sylwester, J., Litwicka, M., Stȩślicki, M., Mrozek, T., Vilmer, N., Fárník, F., Kašparová, J., Mann, G., Gallagher, P. T., Dennis, B. R., Csillaghy, A., Benz, A. O., & Krucker, S. (2021), Astronomy and Astrophysics, 656, A4. "STIX X-ray microflare observations during the Solar Orbiter commissioning phase"
Shaik, S. B., & Gary, D. E. (2021), The Astrophysical Journal, 919, 44. "Implications of Flat Optically Thick Microwave Spectra in Solar Flares for Source Size and Morphology"
Kocharov, L., Omodei, N., Mishev, A., Pesce-Rollins, M., Longo, F., Yu, S., Gary, D. E., Vainio, R., & Usoskin, I. (2021), The Astrophysical Journal, 915, 12. "Multiple Sources of Solar High-energy Protons"
Chen, B., Battaglia, M., Krucker, S., Reeves, K. K., & Glesener, L. (2021), The Astrophysical Journal, 908, L55. "Energetic Electron Distribution of the Coronal Acceleration Region: First Results from Joint Microwave and Hard X-Ray Imaging Spectroscopy"
Chhabra, S., Gary, D. E., Hallinan, G., Anderson, M. M., Chen, B., Greenhill, L. J., & Price, D. C. (2021), The Astrophysical Journal, 906, 132. "Imaging Spectroscopy of CME-associated Solar Radio Bursts using OVRO-LWA"
2020 and earlier
Reeves, K. K., Polito, V., Chen, B., Galan, G., Yu, S., Liu, W., & Li, G. (2020), The Astrophysical Journal, 905, 165. "Hot Plasma Flows and Oscillations in the Loop-top Region During the 2017 September 10 X8.2 Solar Flare"
Nindos, A. (2020), Frontiers in Astronomy and Space Sciences, 7, 57. "Incoherent Solar Radio Emission"
Yu, S., Chen, B., Reeves, K. K., Gary, D. E., Musset, S., Fleishman, G. D., Nita, G. M., & Glesener, L. (2020), The Astrophysical Journal, 900, 17. "Magnetic Reconnection during the Post-impulsive Phase of a Long-duration Solar Flare: Bidirectional Outflows as a Cause of Microwave and X-Ray Bursts"
Chen, B., Yu, S., Reeves, K. K., & Gary, D. E. (2020), The Astrophysical Journal, 895, L50. "Microwave Spectral Imaging of an Erupting Magnetic Flux Rope: Implications for the Standard Solar Flare Model in Three Dimensions"
Kuroda, N., Fleishman, G. D., Gary, D. E., Nita, G. M., Chen, B., & Yu, S. (2020), Frontiers in Astronomy and Space Sciences, 7, 22. "Evolution of Flare-accelerated Electrons Quantified by Spatially Resolved Analysis"
Glesener, L., Krucker, S., Duncan, J., Hannah, I. G., Grefenstette, B. W., Chen, B., Smith, D. M., White, S. M., & Hudson, H. (2020), The Astrophysical Journal, 891, L34. "Accelerated Electrons Observed Down to <7 keV in a NuSTAR Solar Microflare"
Karlický, M., Chen, B., Gary, D. E., Kašparová, J., & Rybák, J. (2020), The Astrophysical Journal, 889, 72. "Drifting Pulsation Structure at the Very Beginning of the 2017 September 10 Limb Flare"
Fleishman, G. D., Gary, D. E., Chen, B., Kuroda, N., Yu, S., & Nita, G. M. (2020), Science, 367, 278. "Decay of the coronal magnetic field can release sufficient energy to power a solar flare"
Chen, B., Shen, C., Gary, D. E., Reeves, K. K., Fleishman, G. D., Yu, S., Guo, F., Krucker, S., Lin, J., Nita, G. M., & Kong, X. (2020), Nature Astronomy, 4, 1140. "Measurement of magnetic field and relativistic electrons along a solar flare current sheet"
Lee, J. (2018), Journal of Astronomy and Space Sciences, 35, 211. "Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field"
Gary, D. E., Bastian, T. S., Chen, B., Fleishman, G. D., & Glesener, L. (2018), Science with a Next Generation Very Large Array, 517, 99. "Radio Observations of Solar Flares"
Polito, V., Dudík, J., Kašparová, J., Dzifčáková, E., Reeves, K. K., Testa, P., & Chen, B. (2018), The Astrophysical Journal, 864, 63. "Broad Non-Gaussian Fe XXIV Line Profiles in the Impulsive Phase of the 2017 September 10 X8.3-class Flare Observed by Hinode/EIS"
Gary, D. E., Chen, B., Dennis, B. R., Fleishman, G. D., Hurford, G. J., Krucker, S., McTiernan, J. M., Nita, G. M., Shih, A. Y., White, S. M., & Yu, S. (2018), The Astrophysical Journal, 863, 83. "Microwave and Hard X-Ray Observations of the 2017 September 10 Solar Limb Flare"
Fleishman, G. D., Nita, G. M., Kuroda, N., Jia, S., Tong, K., Wen, R. R., & Zhizhuo, Z. (2018), The Astrophysical Journal, 859, 17. "Revealing the Evolution of Non-thermal Electrons in Solar Flares Using 3D Modeling"
Kuroda, N., Gary, D. E., Wang, H., Fleishman, G. D., Nita, G. M., & Jing, J. (2018), The Astrophysical Journal, 852, 32. "Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare"
Wang, H., Liu, C., Ahn, K., Xu, Y., Jing, J., Deng, N., Huang, N., Liu, R., Kusano, K., Fleishman, G. D., Gary, D. E., & Cao, W. (2017), Nature Astronomy, 1, 0085. "High-resolution observations of flare precursors in the low solar atmosphere"
Nita, G. M., Hickish, J., MacMahon, D., & Gary, D. E. (2016), Journal of Astronomical Instrumentation, 5, 1641009-7366. "EOVSA Implementation of a Spectral Kurtosis Correlator for Transient Detection and Classification"
Nita, G. M., & Gary, D. E. (2016), Journal of Geophysical Research (Space Physics), 121, 7353. "Measurement of duration and signal-to-noise ratio of astronomical transients using a Spectral Kurtosis spectrometer"
Wang, Z., Gary, D. E., Fleishman, G. D., & White, S. M. (2015), The Astrophysical Journal, 805, 93. "Coronal Magnetography of a Simulated Solar Active Region from Microwave Imaging Spectropolarimetry"
Gary, D. E., Fleishman, G. D., & Nita, G. M. (2013), Solar Physics, 288, 549. "Magnetography of Solar Flaring Loops with Microwave Imaging Spectropolarimetry"

VLA Flare List and Publications

See this link for a list of flare observations made by the Karl G. Jansky Very Large Array (VLA). Below is a partial list of publications that utilize VLA solar data (see also this NASA/ADS Library).


Radio Data from Around The Heliosphere